

Double Beam Microprocessor UV-VIS Spectrophotometer Regular Model

AB-UV-VIS 0072

SALIENT FEATURES

- * Wide Wavelength range, satisfying requirements of various fields.
- * Fully autometed design, realizing the simplest measurements & satisfying the requirements of pharmacopoeia.
- * Maximum of 9 Wavelength & 8 simples can be measured at ine time.
- * Automatic change-over between T lamp & D2 lamp.
- * Optimized optics and large scale integrated circuits design, light source and receiver from world famous measurement methods all add up to hight performance and reliability.
- * Rich measurement methods : wavelength scan, time scan multi-wavelenght determination, multi-order derivative determination, double-wavelength methods and triple-wavelength methods etc, meet difference measurements requitrement.
- * Automatic 10mm 8-cell holder.
- * Data Output can be obtaines via a printer port and a USB interface.
- * Parameters and data can be saved for user's convenince.
- * PC controller measurement can be achieved for more accurate and flexible requirement.

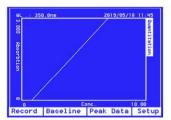
TECHNICAL SPECIFICATION		
Optical System	Double Beam, Grating 1200 lins/mm	
Wavelenght Range	190nm-1100nm	
Spectral Bandwidth	1nm	
Wavelength Accuracy	<=+/0.1nm (656.1nmD2),<=+/0.3nm(full wavelength Range)	
Wavelength Repearbility	0.1nm	
Photometric Accuracy	+-0.3%T (0~100%T)	
Photometric Repearability	0.001Abs(0~0.5Abs)	
Photometric Range	-3A~3A	
Stray Light	<=0.02%T(220nm, nal, 340nm NaMO2)	
Stability	+-0.0004A/H@500nm	
Baseline Flatness	+-0.001A	
Noise	0.0003 A/H	
Scanning Speed	Fast, Mid, Slow	
Wavelength Setting	Auto	
Keyboard	Membrane Keypad	
Light Source	Deuterium & Tungsten Lamp	
Wavelength Resolution	0.1nm	
Photometric Mode	A,T,C	
Detector	Imported Silicon Photodiode	
Interface	USB Port and Parallel Port (Printer)	
Power	AC 220V/50Hz or AC 110V/60Hz	
Dimension	590x460x220mm	
Weight	25kg	
Drift	<=+/0.0004A bs/h	
Cell Holder	2/8 Cell Holder	

Applications

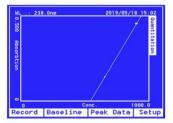
- * Medicine/Pharmaceutical Industry
- * Enviroment Monitoring
- * Commodity Inspection
- * Food Inspection
- * Agricultural Chemistry
- * Teaching in colleges & Universities
- * metalluragy
- * Geology
- * Machine Manufacturing
- * Petrochemical Industries
- * Water and waste water Labs
- * Food and Beverages Labs

STANDARD CONFIGURATION		
Glass Cells	4 No.	
Quartz Cell	2 No.	
Instrument Cover	1 No.	
Software Cover	1 No.	
Software CD	1 No.	
USB Cable	1 No.	
Operational Manual	1 No.	
Software Manual	1 No.	
Software Key	1 No.	

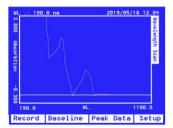
Double Beam Microprocessor UV-VIS Spectrophotometer Regular Model (Eight Cell Holder)


AB-UV-VIS 0072

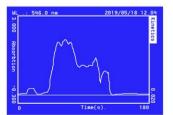
Double Beam UV-VIS Spectrophotometer with more accuracy and flexible requirements. The two detectors are used to measure sample and reference respectively and simultaneously for optimizing measurement accuracy. Iy has wide wavelength range satisfying requirement of various fields, such as biochemical research and ondustry, pharmaceuticals analysis and production, education, environment protection, food industry etc.


Basic Mode

To measure the Absorbance and transmittance


Quantitative

- 1. Coefficient Method
- 2. Standard Curve Up to 10 Standard sample may be used to establish a curve. Four methods for fitting a curve through calibration points: Linear fit. Linear fit through zero, Square fit and cubic fit.


DNA/ Protein Test

Concentration and DNA purity are quickly and easily calculated: Absorebance rations 260nm / 280 nm with optional subtracted absorbance at 320 nm. DNA concentration = 62.9XA260-36.0XA280 Protein concentration = 1552xA260-757. 3xA 280

Wavelength Scan

- 1. The wavelength scan intervals are 0.1,0.2,0.5,1,2,5 nm
- 2. High, Medium and low scan speed are available. They vary from 100 to 3600 nm/ min.
- 3. Wavelength are scanned from high to low so that the instrument waits at high, WL, and it minimizes the degradation of UV sensitive samples.

Kinetics

This mode may be used for time course scanning or reaction rate calculations. Abs vs time graphs is displayed on the screen in real time wait time and measurement time up to 12 hours may be entered with time intervel of 0.5,1,2,5,10,30 seconds and one min. Post- run Manipulation includes re-scalling, curve tracking and selection of the part of the curve required for rate calculation. Rate is calculated using a linear regression algorithm before multiplying be the entered factor.